

Low-Finesse Littrow Cavities as Displacement Sensors

Graham Allen, Ke-Xun Sun, Robert Byer Stanford University

gsallen@stanford.edu

Modular Gravitational Reference Sensor

(MGRS)
Single Proof Mass

- Optical Sensing
- True drag-free design
- Modular
- Large Gap

Presented at Amaldi 6 meeting

Ke-Xun Sun, et al. Modular Gravitational Reference Sensor: Simplified Architecture to future LISA and BBO.

Journal of Physics: Conference Series, 32:137-146, 2006.

Sensor Goals

- High precision
 - 1 pm/√Hz in the LISA science band
- Low force
 - Less than 20 μW optical power
- Compact
 - Fiber delivery and read-out

Measurement Principle

We use a diffraction grating in a Littrow configuration, where the -1 order is reflected back into the incident beam, to form a Fabry-Perot cavity between the grating and proof-mass surfaces.

We then use Pound-Drever-Hall (PDH) RF locking to measure changes in the cavity length.

PDH locking measures the phase shift between the carrier and its RF side-bands.

Using a high-speed fiber optic phase modulator we can add 800+ MHz sidebands to the carrier, ensuring good signal from a low finesse cavity.

the -1st order is reflected

into the incident beam.

Expected signals for our cavity, compared with an ideal PDH signal. In the ideal PDH signal, the side-bands are assumed to be totally reflected, in our cavity, the sidebands are still partially resonant.

Experimental Setup

- Commercial Holographic grating
 - 900 lines/mm
 - Flat-Flat cavity
- 1.6 cm cavity length
- 810 MHz RF Sidebands

Preliminary Results

- Cavity properties
 - FWHM = 73.8 nm (Finesse ~ 5)
 - PDH linear range ≈ 100 nm
 - PDH slope = -750 mV/ μ m
- 10 pm/ÖHz above 3 kHz
 - At 100 μW incident power
 - Limited by Johnson noise in photodetector

Future Work

- Improved photodetector
 - Narrow-band Avalanche Photodiode
- Investigate low signal strength
 - Signal currently about 10% of simulation estimates
- Polarization Effects
 - S & P cavities have different finesse
 - Can this be used to tune the cavity finesse?